organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michael Bolte^a* and Alexander Faber^b

^aInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Physikalische und Theoretische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.013 Å R factor = 0.093 wR factor = 0.268 Data-to-parameter ratio = 23.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dihydridotetrakis(3-picoline)silicon dibromide chloroform tetrasolvate

The title compound, $C_{24}H_{30}N_4Si^{2+}\cdot 2Br^{-}\cdot 4CHCl_3$, (I), contains a hexacoordinated Si atom located on a crystallographic centre of inversion. The coordination of the Si atom can be described as a slightly distorted octahedron, with the 3picoline ligands in the equatorial plane and the two H atoms occupying axial positions. It is remarkable that (I) is not isomorphous with its analogue where the Br^- ions are substituted by Cl^- ions. Received 12 February 2001 Accepted 19 February 2001 Online 28 February 2001

Comment

Lewis acid–base complexes between silicon compounds and nitrogen bases have in recent years been the subject of many structural studies (Hensen *et al.*, 1997, 1988; Chuit *et al.*, 1993). Apart from $[H_2Si(3\text{-picoline})_4]^{2+}\cdot 2CI^-\cdot 4CHCl_3$ (Fleischer *et al.*, 1996), $[H_2Si(3,4\text{-lutidine})_4]^{2+}\cdot 2CI^-\cdot 4CHCl_3$ (Hensen *et al.*, 1998), $[H_2Si(3,4\text{-lutidine})_4]^{2+}\cdot 2CI^-\cdot 6CHCl_3$ (Hensen *et al.*, 2000), $[H_2Si(3,5\text{-lutidine})_4]^{2+}\cdot 2CI^-\cdot 6CHCl_3$ (Stumpf & Bolte, 2001), and $[H_2Si(4\text{-picoline})_4]^{2+}\cdot 2CI^-\cdot 6CHCl_3$ (Bolte & Faber, 2001), the crystal structure of the title compound, (I), is a further example with the structural element $H_2Si(\text{pyridine})_4$.

The coordination of the Si atom can be described as a slightly distorted octahedron, with the 3-picoline ligands in the equatorial plane and the two H atoms occupying axial positions. The two Br⁻ ions are displaced from the first sphere of coordination. It is remarkable that (I) is not isomorphous with its analogue in which the Br⁻ ions are substituted by Cl⁻ ions (Fleischer *et al.*, 1996). A least-squares fit of all non-H atoms of the cations of both structures (r.m.s. deviation 0.259 Å) shows that there are only minor differences between them, *e.g.* the angle between the aromatic rings is 90.0 (3)° in (I) and 96.9° in the structure containing the Cl⁻ ions. However, the

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

A perspective view of the cation of (I) with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level. H atoms, except those attached to Si, have been omitted for clarity.

packing patterns of the two structures are completely different.

Experimental

The title compound was prepared as described by Faber (2000).

Crystal data

$C_{28}H_{34}Br_2Cl_{12}N_4Si$	Z = 1
$M_r = 1039.90$	$D_x = 1.554 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
$a = 8.840 (1) \text{ Å}_{2}$	Cell parameters from 7621
b = 10.059(1) Å	reflections
c = 13.330(1) Å	$\theta = 1-25^{\circ}$
$\alpha = 97.65 \ (1)^{\circ}$	$\mu = 2.60 \text{ mm}^{-1}$
$\beta = 90.68 \ (1)^{\circ}$	T = 173 (2) K
$\gamma = 108.63 \ (1)^{\circ}$	Block, colourless
$V = 1111.35 (19) \text{ Å}^3$	$0.40 \times 0.35 \times 0.20 \text{ mm}$

Data collection

Siemens CCD three-circle diffract-
ometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.37, T_{\max} = 0.60$
22 862 measured reflections
5095 independent reflections
3406 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.093$ $wR(F^2) = 0.268$ S = 1.115095 reflections 219 parameters H atoms treated by a mixture of independent and constrained refinement

$D_x = 1.554 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 7621
reflections
$\theta = 1-25^{\circ}$
$\mu = 2.60 \text{ mm}^{-1}$
T = 173 (2) K
Block, colourless
$0.40 \times 0.35 \times 0.20 \text{ mm}$

 $R_{\rm int} = 0.087$ $\theta_{\rm max} = 27.5^\circ$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -17 \rightarrow 17$ 160 standard reflections frequency: 1200 min intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.0856P)^2]$ + 12.6187*P*] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 2.39 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.85 \ {\rm e} \ {\rm \AA}^{-3}$

Figure 2

A perspective view of the anion and the solvent molecules of (I) with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

Table 1

Selected geometric parameters (A, $^{\circ}$).					
Si1-N11	1.990 (7)	Si1-N21	1.966 (6)		
N21-Si1-N11	89.8 (3)				

Table 2

		•	
Hydrogen-bonding	geometry	(A, °]).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1 - H11 \cdots Br1^{i}$	1.00	2.58	3,565 (12)	170
$C2-H21\cdots Br1^{ii}$	1.00	2.52	3.519 (11)	174

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) x, y - 1, 1 + z.

All H atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters [U(H) = 1.5] U_{eq} [C(methyl)] or U(H) = 1.2 U_{eq} (C)] using a riding model with C-H(aromatic) = 0.95, C-H(methyl) = 0.98, or C-H(tertiary) =1.00 Å. The H atom bonded to Si was refined isotropically applying a restraint of 1.40 (1) Å to the Si-H distance The methyl groups attached to the aromatic rings were allowed to rotate about their local threefold axis.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

References

Bolte, M. & Faber, A. (2001). Acta Cryst. E57, o207-208. Bolte, M., Hensen, K. & Faber, A. (2000). Acta Cryst. C56, e524-525.

- Chuit, C., Corriu, R. J. P., Reye, C. & Young, J. C. (1993). *Chem. Rev.* 93, 1371–1448.
- Faber, A. (2000). PhD thesis, University of Frankfurt, Germany.
- Fleischer, H., Hensen, K. & Stumpf, T. (1996). Chem. Ber. 129, 765-771.
- Hensen, K., Gebhardt, F. & Bolte, M. (1997). Z. Anorg. Allg. Chem. 623, 633-
- 636. Hensen, K., Kettner, M., Stumpf, T. & Bolte, M. (2000). Z. Naturforsch. Teil B, 55, 901–906.
- Hensen, K., Stumpf, T., Bolte, M., Näther, C. & Fleischer, H. (1998). J. Am. Chem. Soc. 120, 10402–10408.
- Hensen, K., Zengerly, T., Pickel, P. & Müller T. (1988). Z. Anorg. Allg. Chem. 558, 21–27.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stumpf, T. & Bolte, M. (2001). Acta Cryst. E57, o209-211.